
J .  F h i d  Xeeh. (1993), wol. 249, p p .  121-133 
Copyright 0 1993 Cambridge University Press 

121 

Nonlinear evolution of surface gravity waves over 
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A unified theory is developed which describes nonlinear evolution of surface gravity 
waves propagating over an uneven bottom in the case of two-dimensional 
incompressible and inviscid fluid of arbitrary depth. Under the assumptions that the 
bottom of the fluid has a slowly varying profile and the wave steepness is small, a 
system of approximate nonlinear evolution equations (NEEs) for the surface 
elevation and the horizontal component of surface velocity is derived on the basis of 
a systematic perturbation method with respect to the steepness parameter. A single 
NEE for the surface elevation is also presented. These equations are expressed in 
terms of original coordinate variables and therefore they have a direct relevance to 
physical systems. Since the formalism does not rely on the often used assumptions 
of shallow water and long waves, the NEEs obtained are uniformly valid from 
shallow water to deep water and have wide applications in various wave phenomena 
of physical and engineering importance. The shallow- and deep-water limits of the 
equations are discussed and the results are compared with existing theories. It is 
found that our theory includes as specific cases almost all approximate theories 
known at present. 

1. Introduction 
The nonlinear dynamics of surface gravity waves on fluid have been studied 

extensively since the pioneering work of Stokes (1849). Various types of approximate 
nonlinear evolution equations (NEEs) have been derived according to the situations 
under consideration (see, for instance Whitham 1974 ; Mei 1989). Equations thus 
obtained may be divided into two groups, namely shallow-water theories and deep- 
water theories. The Boussinesq and the Korteweg-de Vries theories belong to the 
former class whereas the Stokes theory is a typical example of the latter. The finite- 
depth analogue of these theories has been established quite recently (Matsuno 1992). 

Most model equations proposed until now are concerned with the nonlinear 
evolution of surface gravity waves on fluid of uniform depth. However, because of its 
practical importance, several attempts have been made t o  take into account of the 
effects of an uneven bottom (Mei & MBhaut6 1966; Peregrine 1967; Madsen & Mei 
1969; Grimshaw 1970; Kakutani 1971; Johnson 1973; Wu 1981). These works are 
mainly based on the assumptions of both shallow water and long waves and hence 
the range of applicability is severely limited. Recently, Radder (1992) developed an 
explicit Hamiltonian formulation of surface waves on fluid of finite depth and 
compared it with existing theories (Broer 1974, 1975). He also discussed the limiting 
cases of both shallow and deep fluids. 

The purpose of this paper is to develop a unified theory of nonlinear surface gravity 
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waves over an uneven bottom withJinite depth. A new method presented here is a 
generalization of the theory of surface gravity waves on fluid of uniform depth 
formulated by the author (Matsuno 1992). 

We consider the two-dimensional irrotational flow of an incompressible and 
inviscid fluid. The bottom profile is assumed to be a slowly varying function of the 
horizontal coordinate. Although this assumption is not essential in developing the 
theory, it considerably simplifies the analysis. The formalism in this paper relies only 
on the assumption of small wave steepness which implies that we focus on waves of 
small but finite amplitude. The assumptions such as shallow water and long waves 
are not used in deriving NEEs and this fact provides much greater flexibility in 
dealing with specific physical systems. 

In $2, the governing equation of fluid motion is described with the boundary 
conditions in appropriate dimensionless form and then they are transformed into 
those for a fluid region with uniform depth by using a conformal mapping. The 
solutions of the transformed equations are constructed explicitly in $3. In  $4, by 
employing a systematic perturbation method with respect to the steepness 
parameter, we first derive approximate NEEs in terms of transformed variables and 
then rewrite them in original physical variables. We thus obtain a system of 
equations for the surface elevation and the horizontal component of surface velocity. 
A single equation for the surface elevation is also presented. In $ 5 ,  equations arising 
from both shallow- and deep-water limits of approximate equations are discussed 
and they are compared with existing theories. Section 6 is devoted to conclusions. 

2. Basic equations and their transformations 
2.1. Basic equations 

First, we describe the equation of motion of fluid together with the boundary 
conditions. All the variables are non-dimensionalized appropriately as shown later. 
Under the assumption mentioned in $ 1, the fluid motion is governed by the Laplace 
equation 

with the boundary conditions 
82$zx+$uu = 0 in -co < x < co, b < y < ah, (2.1) 

h, +KE$, h, = - & on y = ah, (2.2) 
K 

f3 

KE 
9,+-((S2~~+9~)+a-'(y-y0) = 0 on y = ah (yo: const.), (2.3) 262 

6aq5xbx = &, on y = 6 .  (2.4) 

Here q5 = $(x, y, t)  is the velocity potential, h = h(x, t) is the surface elevation, b = 
b(x) is the profile of the bottom and the subscripts x, y and t appended to 4, h and 
b denote partial differentiations. Equation (2.1) stems from the assumption of 
irrotational flow of an incompressible fluid. Equations (2.2) and (2.3) represent the 
kinematic and dynamic conditions on the free surface, respectively, while the 
condition (2.4) comes from the fact that the flow direction must be that of the bottom 
since the fluid is inviscid. The dimensional quantities with tildes are related to the 
corresponding dimensionless ones by the relations 

I 2 = zx, y" = h,y, t"= (Z/C,)t, 

6 = (gZa/c,) $, = ah, 6 = h, b ,  
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where 1, a and c, are characteristic scales of length (wavelength in a periodic wave), 
amplitude and velocity of the wave, respectively, h, is a typical vertical lengthscale 
which may be taken as an undisturbed fluid depth at x = 0 and g is the acceleration 
due to gravity. The surface elevation h is measured from the undisturbed fluid 
surface which is chosen to be y = 0 in the present case. The dimensionless parameters 
E ,  a and S are defined by 

E = a l l ,  a = a/ho, S = ho/l. (2.6) 

These parameters are connected to each other by the relation E = as. The e is called 
the steepness parameter. The c, is given by co = ( g Z / K ) i  where K is assumed to be t1 
in the shallow-water limit S+O and 1 in the deep-water limit S+ co in accordance 
with the phase velocity of linear surface gravity waves on fluid of uniform depth h,. 
The effect of surface tension has been neglected to simplify the analysis, but it can 
be included without any difficulty. 

The bottom of the fluid is assumed to have a slowly varying profile and it may be 
expressed in the form 

(2.7) 
where B represents the bump on the bottom and B(0) = 0 by the definition of the 
present configuration. This means that the measure of the changing depth is chosen 
to be the same order as that for the surface elevation. The magnitude of B itself may 
be of the order of unity, however. 

b(x)  = - 1 + B ( ~ x ) ,  

2.2. Transformations of basic equations 
In order to apply the method developed by Matsuno (1992),  it is necessary to 
transform the basic equations into those for a fluid region with a flat bottom. The 
corresponding coordinate transformation is well known and it may be represented in 
the form (Woods 1961 ; Byatt-Smith 1971) 

(2.8a) 

(2 .8b )  

where 6(6) = b(x) and the fluid region - 00 < x < 00, b ( z )  < y < ah(x, t )  has been 
mapped conformally into the region - 00 < 5 < 00, - 1 < q < a@& t )  with being 
the surface elevation in the ( E ,  q)-plane. It now follows from the differential relations 
dx = x,  d[ + x,, dq and dy = ys d5 + y7 dq that 

"&x++,,r5 = 1 ,  xJy+x, ,ry  = 0, (2.9a) 

Y&x+Y,,rx = 0, Y&y+Y,,ry = 1. (2.9b) 

On the other hand, since the transformation (2.8) is conformal in the sense that 
x+ iSy is an analytic function of gl[+ iq, the following Cauchy-Riemann relations 
result as an equivalent condition : 

xt = y7, x7 = -say,. (2.10) 

Consequently, x and y are found to satisfy the same Laplace equation as (2.1). By 
combining (2.9) and (2.10), we obtain the important formulae which will often be 
used in this paper 

5x = Y, /J ,  5, = S2Y,/J> 7s = - Y s / J ,  r y  = Y q I J ,  (2.11a) 

5-2 
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where J = a2y; + Y;, (2.11b) 

is the Jacobian of the transformation (2.8). 
Equations (2.1)-(2.4) are then transformed into the following forms : 

8"&c+&7 = 0 in -00 < f < 00, - 1  < q < a&, (2.12) 

where $((, 9, t )  = #(x, y, t )  and the surface elevations in original and transformed 
systems are related to each other by 

(2.16) 

Equation (2.12) follows immediately due to the conformal property of'(2.8). This can 
also be confirmed easily by a direct) calculation. To derive (2.13), we first observe that 
on the fluid surface 

(2.17a, b )  

Substituting (2.17) and the relations 

4 z  = f J c + 7 x 6 7  = (Y,&-Y,iQ/J> (2.18a) 

4IJ = f y & + 9 J , ,  = (~2YJ,+Y,5q/J, (2.18 b )  

into (2.3) yields (2.13), while (2.14) follows from (2.11b) and (2.18). To verify (2.15), 
we first note that on the bottom of fluid the relation q(x ,b(x) )  = - 1 holds. 
Differentiation of i t  with respect to x yields q, + qy b, = 0. Substituting this equation 
together with (2.11) and (2.18) into (2.4), we arrive a t  (2.15). It should be stressed 
that the transformed equations are valid as long as the Jacobian (2.11b) does not 
vanish. 

3. Solutions of transformed equations 
Once the basic equations have been transformed into those for the flat bottom, 

solutions can be constructed following the procedure developed by the author 
(Matsuno 1992). I n  this section we shall summarize the method of solution and 
present explicit solutions. 

We take the solution of (2.12) which satisfies the bottom boundary condition (2.15) 
of the form 

- 

$ = -  i[f+(t-iSr, t)--f-(t+ih, t)I, (3.1) 

where f+(Qt)(f-([,t)) is an analytic function of g( =(+iq)  in the strip 0 < 7 < 
26( -26 < q < 0) and given explicitly by the integral representation 
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Here f is an arbitrary real function defined appropriately on the real axis. If we take 
the boundary values off - + when 7 + f 0, we obtain the important relations 

f (6 & i0, t ) = +( 1 T i7') f ( t , t ) , ( 3 . 3 a )  

where the integral operator T is defined by 

(3.313) 

The symbol P in front of the integral sign denotes tjhe Cauchy principal value 
integral. It readily follows from (3 .3)  that 

(3 .4a)  

(3 .4b)  

If we use (3.1) and the relation 6 = 016, we can evaluate the derivatives of the velocity 
potential on the free surface as follows: 

= -i[f+,&-it.% t)-f-,&+i& 41, ( 3 . 5 a )  

(3 .5b)  

(3 .5c)  

- 

&I7=& = -6[f+,&-kK t ) + f - , & + 4  t)l, 
- 

$ t 1 7 = a E  = - i[ f+, t ( g  - it.&, t )  - f-, (6 + ic6, t )] . 
Substitution of (2 .8)  and (3 .5)  into (2.13) and (2.14) yields the exact system of NEEs 
for and f .  

4. Approximate equations 
Since the system of equations obtained in $ 3  is intractable as it stands, we must 

introduce some approximations to simplify the equations. For the purpose, we first 
note that in the case of fluid with finite depth, the parameters 6 and K may be taken 
to be of the order of unity whereas the steepness parameter e is assumed to be small 
compared to  unity. Except for the profile of the bottom of the fluid (see (2.7)), this 
is the only assumption used in the present theory. The problem under consideration 
now reduces to the expansion of various quantities in power series of e or in a by 
virtue of the relation E = a&. I n  this section, we derive the NEEs correct up to O ( E ) .  
Extensions to  higher-order equations can be made straightforwardly but with 
tedious calculations. We first consider the equations with transformed variables and 
then rewrite them with the original physical variables. 

4.1. Equations with transformed variables 

If we expand (3 .5)  in powers of t. and use (3.4), we obtain the first two terms of the 

$&=ah = - Tf[-cgfg+ o(62), ( 4 . 1 ~ )  

A/l?l'"& = - ~ [ f ~ - t . ~ T f g + + ( 4 1 >  (4.lb) 

$tll=afi = -Tft-e$f,+O(e2). (4.1 c )  

At this stage i t  is convenient, to introduce the horizontal component of the surface 

expansions - 

- 

- 

velocity : - 

= 4flrl=a6. (4.2) 

Then f in ( 4 . 1 ~ )  can be solved iteratively in terms of fi as - -1 
f s  = -F%+el'(hTfiE)+O(e2), (4 .3a)  
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where the operator 9 is the inverse of T, namely TF = FT = I  and it is given 
explicitly by 

(4.3 b )  

Substitution of (4.3) into (4.1 b )  and the &derivative of ( 4 . 1 ~ )  yields 
- - _ -  $q+ = - S[ - Fa+ €{ha5+ T(hTut)} + O(E2)] ,  (4.4) 

= at+E(E5Fat-lit FtZE)+O(€2). (4.5) 

Next we derive the approximate expressions for y5, y,, and J on the free surface 
= ak. It readily follows from (2.8) and (2.11) that 

y5 = - - a 4 ~ + ~ ( a 3 ) ,  yll = -6+o(a2), (4.6a, b)  

J = 62+O(a2), (4.7) 

where 6((5) = - 1 +B(a[). (4.8) 

Note that 6[ = &(aE) = O(a)  where the prime denotes differentiation with respect 
to at so that ys turns out to be O(a2). Substituting (4.2) and (4.4)-(4.7) into (2.13) and 
the &derivative of (2.14), we obtain a system of equations for 5 and a :  

KE - _ -  
ht-rFu+-[(uh)5+T(hTu5)]+O(s2) b2 b2 = 0, (4.9) 

E 
at- (a) += [ K a a < +  6'h5P(6E5)] -k o(S2) = 0. (4.10) 

It is also possible to derive a single equation for k by combining (4.9) and (4.10). To 
show this, we first multiply (4.9) by 6' and then operate with T on the resulting 
equation. It leads, after iterating with respect to U, to 

b2 

KG = T(r2ht) + K € [ T ( d ) < +  kpat] + o(?) 
= T(6'ht) + E [ T { E T ( ~ ~ Q } ~ +  k(PlG,)J + O(e2). (4.11) 

Operating with F on (4.10) and substituting (4.11), we arrive at  the desired equation 
for h: 

T(Pkt) + i p { ~ } ]  +O(e2) = 0. (4.12) 
5 

Here, h has been replaced in the O ( E )  terms by the approximate equation h,, = 

( K / 6 ' )  pT!h),+O(€). 
4.2. Equations with original variables 

In order to transform equations (4.9), (4.10) and (4.12) into those with original 
physical variables, we first introduce the horizontal component of the surface 
velocity by 

u = 4zly=orh. (4.13) 

Evaluating the relation q55 = x5 q5z + y5 q5u on the free surface, we obtain 

u = x5u+0(a2),  (4.14) 
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where the approximate expression (4.6) has been used together with the definition of 
a. We employ (2.8) to calculate x5 on 7 = aE. The result is expressed in the form 

P -  6 4 -  
3 45 

= - 6+- b,+- b ,  + . . . + 0(a2), (4.15) 

where, in the second line, integrations have been performed after expanding 6([- 6c) 
with respect to 8e. Then following the procedure due to Radder (1992), we define the 
function h = h(x) by 

x E ; ~ ~ = ~ E  = - (1 + A )  b.  (4.16) 

Introducing (4.16) into (4.15) yields a nonlinear equation for h and it can be solved 
by iteration. The result is 

A = - -  i6’ ( b: + bb,,) + O(a2) 

= -$“{B’2+ ( -  1 +B)B”}+O(a2). (4.17) 

Thus we obtain, within the approximation considered here, the expression 

x&=az = -b(z)+O(a2)  = l-B(ax)+O(a2), (4.18) 

and hence a = - b u + O ( a 2 ) .  (4.19) 

On the other hand, in view of (2.16) the surface elevation 6 can be represented in 
terms of h as 

ii= - h / b + O ( d ) .  (4.20) 

It also follows from (2.10), (2.11) and (4.18) that 

(4.21) 

Finally using (2.8) and (4.18), the <-derivative on the surface can be rewritten in the 
x-derivative as 

(4.22) 

If we substitute (4.19)-(4.22) into (4.9), (4.10) and (4.12), we finally obtain the 
equations expressed in terms of the original variables : 

bh, + KC u + ~ s [ b ( u h ) ,  + !&{(h/b2) G(bu , ) } ]  + O ( 2 )  = 0, (4.23) 

ut + h, + E[KUU, + (1/b) h, !& h,] + O ( 2 )  = 0 ,  (4.24) 

+ + ! & { ( ~ h t ) 2 / b 3 } ] , + 0 ( ~ 2 )  = 0. (4.25) 

bhtt-K?b h,-€b[Khh, + ( 1 / b )  ht Tb h, +aph(h:/b) + KG[(h/b2)  ?b h,. 

Here the integral operators % and !& are defined by 

(4 .26~)  

(4.26 b)  
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Throughout the paper, the bottom topography has been assumed to be slowly 
varying with a characteristic lengthscale of O(a-’). However, if we further assume 
that the bump on the bottom is small and has the form 

B ( m )  = d ( a x ) ,  (4.27) 

equations (4.23)-(4.25) are considerably simplified. Indeed, carrying out the 
perturbation analysis, one finds that 

(4.28) 

(4.29) 

(4.30) 

h , - K F U  -k K € [ ( U h ) , +  p(hpU,) + (I/&) (Po U),] = 0, 
ut + h, + E(KUU, - h, Ph,) + O ( 2 )  = 0, 

h , , + ~ ? h , + ~ [  -~hh,+Zh, Th,+~h~--Kl?i(h~h,)-(~/6) Eh,l,+O(e’) = 0, 

where the operator is defined by 

B (ax”) dx” , (4.31) u(x‘, t )  
sinh ( ~ / 2 8 )  (x‘ -z) 1, 

and in deriving (4.30) we have used the formula, 

F ( f g )  = F[ (Q) ( F g ) ]  + f F g  + gFf. (4.32) 

reduce to 7’ and f’ given 
respectively by (3.3b) and (4.3b), and (4.23)-(4.25) and (4.28)-(4.30) reduce to those 
corresponding to the flat case already derived by Matsuno (1992). 

When the bottom of the fluid is flat or b = - 1, Tb and 

5. Shallow- and deep-water limits 
The approximate equations obtained in $4 can be used to describe various wave 

phenomena over a wide range of fluid depth. However, since the effect of an uneven 
bottom would be primarily important in shallow water, we first discuss the shallow- 
water limit of the equations and compare the results with existing theories. After 
that we briefly comment on the deep-water limit. 

5.1. Shallow-water limit 
In the shallow-water limit S+ 0, we employ the Boussinesq approximation, namely 
the parameters a and 6 are assumed to be small but finite and they are connected to 
each other by the relation a = O(S2).  To derive approximate equations correct up to 
O(a,  a2), we first expand the operators To and pb defined by (4.26) in powers of 6 as 

qf (x)  = sgn(x‘-x)f(x’)dx’+O(&), (5.1 a )  

%f(%) = - ~ b y , - ~ ~ 3 b ~ f ~ , , -  ~ b b , f +  0(d5) ,  (5 .1b)  

where sgn (z-z‘) is the sign function. Note that b, = &(ax) = O(a) = 0(S2) .  In the 
shallow-water limit, the parameter K becomes el. Taking this fact and the relation 
e = a6 into account, (4.23)-(4.25) reduce, after substituting (5.1) into them and 
retaining the terms up to  and including O(a ,  S’), to the equations 

ht- (bu),-g62b3~,,,+a(~h),+O(a82, P) = 0, (5.2) 

2s --cQ 

Ut + h, + auu, + O(a62) = 0, (5.3) 
4, + (bh,), +32b3h,,xx 

sgn(x’-x)h,(x’-x,t)dx’ +O(a8z,P) = 0.  (5.4) 
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I n  the case of the flat bottom b = - 1,  these equations coincide with those obtained 
by Matsuno (1992). 

Broer, van Groesen & Timmers (1976) have developed a Hamiltonian method for 
long water waves over a bottom profile of small slope. They obtained an explicit 
Hamiltonian under the same assumptions as those employed here (see equation 
(7.1 1) in their paper). In terms of our notation, it can be written in the form 

(5.5) 

where the derivatives of the velocity potential are evaluated on the free surface y = 
ah. Now, Hamilton’s equations of motion, h, = 6H/6$ and q5t = -SH/8h yield a 
system of NEEs for h and 4: 

(5.6) 

$5 t = -h-;aq5;+O(aS2,64). (5.7) 

h, = (b4& +@2(b34,z),2 - a@$,),+ (w2, @L 

If we use (2.2) and (4.13) and note b, = O(a) ,  we find that (5.6) and the x- 
differentiation of (5.7) coincide with (5.2) and (5.3), respectively within the 
approximation up to  O(a, 6’). Since (5.2) and (5.3) have been obtained as special cases 
of (4.23) and (4.24), respectively, it is natural to  suspect whether the latter equations 
are of Hamiltonian type. This question is, however, not solved as yet. 

Equation (5.4) is an analogue of the Boussinesq equation in shallow-water theory 
and it describes nonlinear waves propagating in both the right and left directions. I n  
order to obtain an equation describing a unidirectional motion to the right for 
instance, it is appropriate to  introduce a new coordinate system according to  

, - - t ,  T =  at. 
dx’ 

( - b(x’))2 

Then, equation (5.4) reduces to  a variable-coefficient Korteweg-de Vries equation 
(Kakutani 1971) 

b a2 3 
4ab 6a h,+~h---h,x,--hhh,+O(a, 2b 6 2 )  = 0. (5.9) 

Note, in this equation, that  6, = ab, due to  b, = 0. 
Equation (5.9) is appropriate for solving the initial value problem. Another 

coordinate transformation is possible which is convenient for treating the boundary 
value problem. Explicit’ly i t  may be written in the form 

dx’ 
l - t )  Y = a x .  

( - b(x’))% 
(5.10) 

The equation corresponding to (5.9) now takes the form (Kakutani 1971 ; Johnson 
1973) 

(5.11) 

A further reduction can be made if we define the new variables A,  r and z by (Ono 
1972) 

262 * 6 2  
h = -b2h, 3a T = 6a J y O { - b ( y ) } i d ~ ,  x = X .  (5.12) 
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Equation (5.1 1)  then becomes 

f i , +6~~ ,+~ , , ,+~ f i+O(a ,6 ' )  = 0, (5.13a) 

where v = Y(7) = SJb, (5.13b) 

represents the effect of an uneven bottom. 
In  the same way, by using the expansion Tb f = - 6@+ O ( P )  together with (5.1) we 

can show that (4.28)-(4.30) reduce to the following equations : 

(5.14) 

(5.15) 

h,+ ( I  -olB)u,+g62u,,,+a(uh),+O(a62,S4) = 0, 

U, + h, + auu, + O(aS2) = 0, 

htt - h,, - P2h,,,, 

sgn(x'-x)h,(x',t)dx' +O(aS2,P) = 0. (5.16) 

For the purpose of comparing these equations with existing ones, we introduce the 
layer-mean horizontal velocity by 

1 rah 
(5.17) 

After some calculations, we find that CJ is related to u by the relation 

u = U-~S",,+O(P). (5.18) 

Substituting (5.18) into (5.14) and (5.15) and using the approximation SU,  = 
(BU), + O(a),  they are recast in the forms 

ht+[(1-aB+ah)U],+O(aS2,S4) = 0, 

Ut +h, + uUU, -~S2U,, ,  + O(O@) = 0. 

(5.19) 

(5.20) 

This system of equations is in agreement with that derived by Lee, Yates & Wu 
(1989) in the specific case that the surface pressure is constant, and the bottom profile 
is independent of t in their equations. 

5.2. Deepwater limit 
Next we shall investigate NEEs resulting from the deep-water limit 6+ co. In this 
case it is appropriate to rescale the vertical coordinate as y + y/S before taking the 
limit. If we consider a far-field region of the flow for which ex = O ( l ) ,  the bottom 
profile may be expanded in inverse powers of 6 as 

b(x) = - 1 +B(€X/S) = - 1 + ( € Z / S ) B ' ( O )  + 0 ( 6 2 ) ,  (5.21) 

where we have used B(0) = 0. Then (4.23)-(4.25) reduce to 

h, +Hu + €[(?Ah), +H(hHu,)] + O(e2) = 0, (5.22) 

u,+h,+s(uu,+h,Hh,)+O(e2) = 0, (5.23) 

ht,-H7t,-e[hh,+H(hHh,) +H(Hh,)2],+0(€2) = 0. (5.24) 

Here the operator H is the Hilbert transform defined by 

(5.25) 
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and in deriving (5.24) use has been made of the formula 

H ( f 9 )  = H { ( H f )  (WI +fH9 + S H f ,  (5.26) 
which is the deep-water analogue of (4.32). The above equations coincide perfectly 
with those obtained by Matsuno (1992) in the case of infinite and uniform fluid depth. 
Thus we find that in the deep-water limit an uneven bottom has no effect on the 
evolution of surface gravity waves, which is in accordance with physical intuition. 

In this paper, we have been concerned with approximate equations correct up to 
O ( E ) .  However, beca.use of current interest in deep-water phenomena such as higher- 
order modulation effects (Dysthe 1979; Su 1982; Lo & Mei 1985; Brinch-Nielsen & 
Jonsson 1986; Akylas 1989, 1991) and instabilities (Yuen & Lake 1982), it is 
meaningful to take the approximation further. In the case of fluid with infinite depth 
this can be easily performed. For reference NEEs correct up to O ( 2 )  are cited in the 
Appendix. 

6. Conclusions 
In  this paper we have presented approximate NEEs describing nonlinear surface 

gravity waves on fluid of varying depth. One advantage of our formalism is that the 
equations are written in terms of original coordinate variables and therefore they 
have a direct relevance to physical systems. These equations are uniformly valid 
from shallow water to deep water and have wide applications in various wave 
phenomena of current interests such as the deformation of a solitary wave climbing 
a beach, the reflection of waves by a shelf and the evolution of a solitary wave passing 
over a submerged obstacle, etc. 

Although we have restricted our consideration to waves of small but finite 
amplitude, the NEEs derived here can easily be extended to include higher-order 
nonlinear effects. In  all cases, higher-order linear dispersion effects can be fully 
incorporated. The generalized equations would be particularly suitable to describe 
highly nonlinear phenomena such as the highest solitary wave (Miles 1980) and the 
breaking wave (Peregrine 1983, 1987). From the mathematical point of view, 
however, the expansion may be valid only in asymptotic mean and it is probable that 
solutions are not convergent beyond a certain wave steepness, in analogy with the 
well-known Stokes’ expansion for gravity waves (Schwartz 1974 ; Cokelet 1977). This 
is a highly delicate mathematical problem and it should be pursued further in detail. 
In the future work, we shall investigate these important problems on the basis of the 
model NEEs obtained in this paper. 

The author wishes to thank Professor M. Nishioka for continual encouragement. 

Appendix. Higher-order NEEs for deep-water waves 
In  this Appendix, we describe higher-order NEEs for deep-water waves correct up 

to O(e2) .  The details of the derivation are omitted and only the final results are 
quoted. Equations corresponding to (5.22)-(5.24) are now written as follows : 

h, +Hu + €[ (uh), +H(hHU,)] 

Ut + h, + E(UU, + h,Hh,) 
+e2[H{hH(hHu,),) +la(h2u,,) +$(h2Hu,),] +0(2) = 0, 

+s2[2h,H(uu,) -2h,~H~,+h,H(hHh,) ,+hh,h, , ]  +O(e3) = 0, 

(A 1) 

(A 2) 
h,, = m, + 8, + E ~ G ,  + 0(€3), (A 3) 



As an application of (A 3), we can show with the aid of the formulae 

H e i k X  = i sgn k eikx , 

that it exhibits a steady periodic wave train of the form 

h = c o n s t + a c o s [ + ~ e k ~ ~ c o s 2 [ + ~ ~ k ~ a ~ c o s 3 f ; + 0 ( ~ ~ )  ([ = kx-wt) ,  (A 8) 

with = +$e21c2a2 + 0 ( € 3 ) }  (li > 0). (A 9) 

The expression (A 8) is a correct form of the first three terms of the Stokes expansion 
for deep-water gravity waves. This shows the validity of (A 3). 
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